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Abstract - Despite more than a decade of experience with 
the use of standardized benchmark circuits, meaningful com- 
parisons of EDA algorithms remain elusive. In this paper, 
we introduce an entirely new methodology for characterizing 
the performance of Binary Decision Diagram (BDD) soft- 
ware. Our method involves the synthesis of large equiva- 
lence classes of Entropy-Signature Invariant (ESI) circuits, 
based on a known reference circuit. We demonstrate that 
such classes induce controllable distributions of BDD algo- 
rithm performance, which provide the foundation for statisti- 
cally significant comparison of different algorithms. 
Keywords: Benchmarking, BDD, entropy, ESI. 

INTRODUCTION 

The characterization and comparison of Design Automation 
algorithms has historically been based on the use of widely- 
accepted sets of benchmark circuits[l, 2]. The use of stan- 
dardized test cases creates an impression of generality and 
lack of bias in comparisons, but in fact, there is little general- 
ity in this process. The commonly used benchmark circuits do 
not represent a continuum of complexity, and in general, the 
benchmark sets have no invariant properties: each circuit is 
unique in size, function and architecture. Furthermore, since 
these circuits are widely available and thoroughly studied, it 
is likely that many current DA tools are, in effect, "tuned" to 
run well on these circuits. The authors do not mean to suggest 
any deception or dishonesty. The mere use of a small sam- 
ple of specific, unrelated circuits as measures of performance 
inherently induces bias. 

In most other fields of science, comparisons between the- 
ories are routinely made by use of controlled experiments. 
Acceptance of results by the community is conditioned on 
demonstration that a theory is repeatable and statistically 
significant; publication is often denied in cases of minor or in- 
cremental advances. The field of Electronic Design Automa- 
tion, in sharp contrast to such rigor, does not have any pro- 
cess analogous to "clinical trials" as understood in medicine. 
Incremental or nonrepeatable results routinely appear even 
in widely-respected conferences and journals, because there 
is no objective means available to make meaningful compar- 
isons to prior results. It is our long-term goal to introduce a 
rigorous, scientific, statistically meaningful paradigm to EDA 
benchmarking. 

This paper introduces Entropy-Signature Invariant (ESI) 
classes of mutant circuits to study the complexity of soft- 
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ware packages implementing Reduced, Ordered Binary Deci- 
sion Diagrams[3] (hereafter referred to as BDDs). In princi- 
ple, since a BDD is a canonical representation of a function, 
the circuit implementation of that function should have no 
impact on the complexity of the BDD. However, it is well 
known that the choice of BDD variable order has a profound 
impact on the size of the BDD data structure, and that deter- 
mining an optimal ordering is itself an np-complete problem. 
Developers of BDD packages must therefore employ heuristics 
to estimate an initial ordering, and often invoke dynamic re- 
ordering algorithms to refine the initial ordering and keep the 
complexity of the BDD within bounds. While many studies 
have been published comparing various BDD packages and al- 
gorithms, none have used controlled experimental procedures 
to show the sensitivity of the algorithms to properties of the 
functions being represented. 
The paper is organized into the following sections: 

(2) background and motivation; 
(3) entropy-invariant classes; 
(4) preliminary experiments; 
(5) synthesis of ESI mutant classes; 
(6) summary of experimental results; 
(7) conclusions. 

MOTIVATION 

Variable ordering for BDD construction has been widely stud- 
ied, and many elegant algorithms have been published which 
aim to achieve near-optimal orders at reasonable cost [4, 5, 6]. 
Nevertheless, a great deal of variability of results can be ob- 
served under widely-used BDD packages, even on very simple 
circuits. 

A = C499-orig-best 
B = C499-ref-best 
C = C1355-orig-best 
D = C1355-ref-best 
E = C499-orig-CAL 
F=C499-orig-CMU 
G = C1355-ref-CU 
H = C1355-ref-CAL 
I = C499-orig-CU 
J = C1355-orig-CAL 
K = C499-ref-CAL 
L = C13S5-orig-CU 
M o C499-ref-CU 
N = C1355-orIg-CMU 
0 = C499-ref-CMU 
P = C1355-ref-CMU ABCDEFGH I JKLMNOP 

Fig. 1.   BDD variability in logically equivalent circuits. 

Figure 1 illustrates BDD sizes achieved on the logically 
equivalent C499 and C1355 combinational benchmark circuits 
under three BDD packages. For these experiments, we used 
two structural variants of the benchmark circuits: 

(1) Original: The original benchmark circuit was resynthe- 
sized using only two-input gates. 

(2) Reference: A synthesized version of the original cir- 
cuit, which has been converted to a canonical bipartite graph 



representation as described in a later section. 
In Figure 1, bars A, B, C, and D give the BDD sizes 

achieved for the two variants of both circuits, with a fixed, 
near-optimal variable ordering given by Somenzi [7]. As ex- 
pected, all BDDS were of identical size and were verified to 
be logically equivalent1. 

The remaining bars in the figure show the BDD sizes 
achieved using dynamic variable ordering in VIS [8], with 
the CAL [9], CU [10], and CMU [11] packages. The figure 
illustrates several important points: 

(1) All BDD packages make use of structural analysis to 
calculate initial variable ordering. The algorithms can easily 
be led to poor orderings by the particular circuit realization 
being processed. For instance, the CAL package produced 
a BDD with 26,790 nodes for the original (E) realization of 
C499, and 39,166 for the reference (K) version. 

(2) Comparisons of the performance of different BDD pack- 
ages based on isolated benchmarks can be very misleading. 
For instance, the CMU package got a near-ideal size of 29,606 
nodes for the original C499 circuit, but 70,198 nodes for the 
reference C1355 circuit; the CU package got 32,546 nodes for 
the C1355 reference, but 41,386 for the C499 original. De- 
pending on which of these logically equivalent circuits is cho- 
sen as a benchmark, either package can be said to perform 
"better." 

(3) Each BDD package achieved results close to the known- 
good ordering in at least one case, but wide variability in 
performance was observed for all packages under the four 
function realizations used in the experiment. The worst-case 
spread was 8,840 nodes for CU, 12,376 for CAL, and 40,592 
for CMU. 

These observations illustrate the inadequacy of current 
benchmarking procedures for comparing the performance of 
function-based algorithms, in particular BDD packages. In 
this paper, we introduce a new class of test cases which are 
based on controlled structural variations which preserve the 
entropy of the reference function. We analyze the properties 
of this class of circuits and demonstrate their effects on BDD 
package performance and variability. Through this kind of 
analysis, we will gain insights into structural factors which 
affect variability of BDD sizes, leading to methods which will 
reduce the variability of the BDD size to a range commensu- 
rate with the variability in the functions themselves. 

ENTROPY-INVARIANT CLASSIFICATION 

Cheng and Agrawal[12] showed that the computational work 
of a function (thus its complexity) is directly related to its 
entropy. 

For a single-output function, the entropy is given as 

E(P1) = Pi • log2 (i-) + (1 - Pi) • log2 (Y^P[) (1) 

where Pi is the probability of the output being a "1". It is 
clear that any two single-output functions whose exhaustive 
simulations contain the same number of "ones" will have the 
same entropy, and thus similar complexity. 

Figure 2(a) illustrates the concept of entropy invariant mu- 
tations, using a simple 3-input multiplexor function /.00 = 
ac + bc'. The string [00100111] represents the output of an 
exhaustive simulation of the function. Functions r.01 through 
r.16 are randomly generated with the same entropy as /.00; 
a simulation, the BDD size and Hamming Distance from /.00 

*For all experiments described in this paper, the VIS 1.1 system[8] was 
used. An Appendix describes the test conditions and conventions. 

(a) Entropy-invariant (b) Entropy-invariant 

Boolean functions Boolean functions 

in random  HD class in constant HD class 

HD : BDD HD BDD 
f .00= [00100111] - 5 f .00= [00100111] - 5 

r.01 00011101 4 7 f .01 10000111 2 6 
r.02 00011110 4 6 f .02 10100011 2 7 
r.03 00101011 2 7 f.03 10100101 2 4 
r.04 00110011 2 2 f .04 10100110 2 6 
r.05 01001011 4 6 f .05 01000111 2 7 
r.06 01001110 4 7 f .06 01100011 2 6 
r.07 01111000 6 6 f .07 011001O1 2 6 
r.08 01101001 4 6 f .08 01100110 2 4 
r.09 01110010 4 7 f .09 00010111 2 7 
r.10 01110100 4 7 f.10 00001111 2 2 
r.ll 01111000 6 6 f.ll 00110011 2 2 
r.12 10010101 4 6 f .12 00110101 2 7 
r.13 00110110 2 6 f .13 00110110 2 6 
r.14 11011000 8 7 f .14 00101011 2 7 
r.15 10110001 4 7 f.15 00101101 2 6 
r.16 11100001 4 6 f .16 00101110 2 7 

01234567   01234567 

f.00=ac+bc': reference function 
HD: Hamming Distance 

BDD: size of BDD (in VIS) 

Fig. 2.   Two classes of entropy-invariant Boolean functions. 

are shown for the functions in this entropy-invariant equiv- 
alence class. Figure 2(b) illustrates another such class, con- 
sisting of mutations of /.00 in which the Hamming Distance 
of any mutant from /.00 is exactly 2. Even for such simple 
functions, it can be seen that a range of BDD sizes is induced 
by these mutations. Although it is not evident in this trivial 
example, we will demonstrate that the BDD size range in- 
creases as the Hamming distances of the mutants from the 
reference function increases. 

(a) (b) 
Reference circuit Mutant circuit 

PO-cut PO-cut 
r.13  00110110 p.13  01010110 
r.14  11011000 p.14  10111000 
r.15  10110001 p.15  11010001 
r.16  11100001 p.16  11100001 
   01234567    01234567 

Fig. 3.   Exhaustive simulation of two 3-input circuits. 

For a multi-output function, the entropy is given as 

2"1 

£(P) = ]Tp-log2(-y (2) 

where Pi is the probability of primary output vector i under 
an exhaustive simulation of the function, and m is the num- 
ber of primary outputs. In a manner analogous to single- 
output functions, multi-output functions have the same en- 
tropy if their exhaustive simulations have the same number 
of instances of each vector occurring at the outputs. 
Entropy Signature. Consider a combinational circuit 
whose signal values are probed on k wires. We refer to the 
wires being probed as a cut. For example, the results of 
the two simulations in Figure 3 correspond to two 3-input 
4-output combinational circuits. The four primary outputs 
can be considered as a PO-cut, and its entropy, under ex- 
haustive simulation, can be evaluated exactly using Equation 
2.   We refer to the entropy of a cut, whether obtained via 



exhaustive simulation or approximated, as an entropy signa- 
ture of the cut. Notably, the entropy signature for either of 
the responses in Figure 3 is 1.5613, thus we say that both re- 
sponses correspond to a pair of Entropy Signature Invariant 
(ESI) circuits. 
Entropy-Invariant Mutations. We define a PO Cut of 
a multi-output circuit as a cut consisting of the primary out- 
puts of the circuit. Figure 3(a) represents a simulation of the 
PO cut of a hypothetical 3-input, 4-output function. Figure 
3(b) is an entropy-invariant mutation of this circuit. Note 
that this mutation was achieved by simply exchanging PO 
vectors (columns in the figure) 1 and 2. In general, any such 
pairwise vector exchange (or indeed, any 2fe-wise exchange) is 
entropy-invariant, since only the order of the vectors changes, 
not their probability. This suggests that, in principle, large 
classes of entropy-invariant functions can be easily synthe- 
sized from a small simulation of a reference function by ran- 
domly exchanging pairs of vectors in the PO cut. Later, we 
will extend this notion to two-vector exchanges in any cut of 
a canonical form of the circuit. 
Size of a Mutation. We define the size of such a circuit 
mutation as the Hamming distance between the reference and 
mutated functions. In Figure 3, the size of the mutation is 3. 
While the size of a fc-output mutation can range from 1 to k, 
the Hamming distance between any two single-output func- 
tions in the ensemble is either 0 or 2, regardless of the choice 
of input vector pairs. Thus an entropy-invariant mutation of 
a multi-output function induces only very minor changes in 
the constituent single-output functions. Operations of this 
type are used in the remainder of the paper to generate large 
ESI circuit classes for characterization of BDD packages. 
Properties. The essential properties of each ESI mutant 
class are the following: 

(1) Each circuit in the ESI mutant class has the same sig- 
nature through the PO-cut. 

(2) The size of a perturbation across a PO-cut of size A; 
may vary from 0 to k. Perturbations are performed pairwise 
in order to preserve the entropy of the cut. However, the size 
of any perburbation of each function in the cut is bounded by 
the number of pairs of minterms that are used to induce the 
perturbation; thus the perturbation size may be at most 2, 4, 
6, etc. if we use 1, 2, 3, pairs of minterms respectively. 

(3) It is not necessary to always perturb the PO-cut to 
induce an ESI mutant circuit behavior. The canonical bidi- 
rected graph form, which we introduce later in the paper, 
can serve the same purpose. The same principles apply to 
perturbation of any cut defined in the canonical form. 

PRELIMINARY EXPERIMENTS 

In principle, a "small" change in a function should result in a 
correspondingly small change in its BDD. We now illustrate 
the effect of small entropy-invariant mutations on the size 
of BDDs, to demonstrate that ordering algorithms can be 
extremely sensitive to these perturbations. 

Figure 4(a) shows the mean BDD size for classes of 200 
randomly generated functions. Each class contains 200 unique 
functions with a constant entropy, one output, and a number 
of inputs ranging from 5 to 11. As expected, BDD size is 
nearly exponential in entropy for any particular function size. 
Figure 4(b) shows the detailed distribution for one class, the 
11-input functions with E=1.0. The Hamming Distance of 
this set of randomly-generated functions ranged from 955 to 
1115 from a member of the class whose BDD size is the median 
of the distribution. Figure 4(c) shows the distribution of a 
different class of 200 circuits, which was created not randomly, 
but by inducing entropy-invariant mutations as described in 
the previous Section. The median-size random circuit of the 

class of Figure 4(b) was again used as a reference circuit, and 
mutations were performed as described earlier. The narrower 
distribution of BDD sizes confirms the intuition that BDD 
size variability should decrease for functions "closer" to the 
reference circuit. 

A common objection to the use of randomly generated 
functions in benchmarking is that they are in some sense not 
representative of realistic circuits. We now show how entropy- 
invariant mutations of a realistic circuit can overcome this 
objection. We usethe modified carry chain circuit of Figure 
5(a) as a readily-scalable example of a common circuit; the 
circuit can be cascaded to any number of inputs, terminated 
by an XOR gate with a single additional input, e in Figure 
5(a), to assure an exact entropy of 1.0. For any size, the exact 
optimal variable ordering of this circuit is known. The upper 
line of Figure 4(d) represents the distribution of BDD sizes for 
the random functions of E=1.0, for 5 through 11 inputs, from 
Figure 4(a). The lower line shows a similar distribution for 
entropy-invariant mutations (Hamming distance 2) of the ex- 
ample circuit over the same range of input sizes. Note that at 
n = 11, an anomaly appears for the realistic circuits. Rather 
than increasing monotonically as expected, the BDD package 
appears to have found a much better variable order for the 
mutants at n = 11 than for smaller values of n; however, note 
that this was not the case for the reference circuit. 

Figure 4(e) shows the lower line of Figure 4(d) on an ex- 
panded scale, along with distributions for the same mutants 
with a fixed, optimal variable order. The bottom set of points 
of Figure 4(e) represent the reference circuit alone, under the 
optimal variable order. It is evident that the ordering algo- 
rithms do not produce near-optimal orderings for any of the 
mutants. Even with an optimal order as a starting point, 
the dynamic variable ordering algorithms apparently result 
in worse orderings than they start with. Finally, none of the 
mutants is as small as the reference circuit. 

Figure 4(f) shows the complete distribution for the mutant 
set at n = 11, with the reference function shown to illus- 
trate the anomalous behavior observed above. With this set 
of experiments, we have demonstrated that on some small, 
realistic functions, even under known-optimal variable order- 
ing, current BDD variable ordering algorithms can produce 
surprisingly nonoptimal results. Next, we extend the work 
to larger circuits and show how the accepted benchmarking 
methodology for BDD algorithms can be misleading under 
controlled experimental conditions. 

ESI MUTANT CLASS SYNTHESIS 

We now present a methodology for scaling these results to 
larger functions, and demonstrate that the demonstrated 
properties of entropy-invariant mutant classes are observed 
on the larger functions. 
Bipartite Canonical Form. A graph-based model of a 
netlist is not effective for the problems we consider. On the 
other hand, a model of a netlist as a directed hypergraph 
is not unique. We use the notion of cell level, levels of net 
pins, and netspan2. The canonical form of a bipartite directed 
graph, a multi-level graph structure of alternating sets of net 
nodes and cell nodes, is a simple transformation of the un- 
derlying netlist: levels of some of its pins are redefined, and 
a new type of cell node, a feedthrough cell is introduced. 

The salient property of this form is that the netspan of all 
edges (or wires) in this graph is well-defined: edges (wires) 
connecting net nodes and cell nodes have netspan = 1, edges 
(wires) connecting cell nodes and net nodes have netspan = 0. 

2For each net, netspan = pm„* -Pmin. where the two numbers denote the 
maximum and the minimum pin level of the net 
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Interchangeably, we may refer to these edges as wires or two- 
pin nets [13]. The canonical form provides for simple defini- 
tion of a cut, in addition to the PO-cut defined earlier. We 
define the cut by probing, at a chosen level k, all wires driven 
by logic and feedthrough nodes before the wires reach the re- 
spective net node, i.e. all wires whose netspan = 0. These 
are the same wires onto which we induce entropy-signature 
invariant perturbations, as explained earlier. 

We illustrate an example of a circuit schematic with its 
canonical form and pairwise entropy signature in Figure 5(a- 
b). The circuit is the modified carry chain used in the previous 
discussion. In addition, Figures 5(c-d) have been designed to 
illustrate the process of logic perturbation that leads to the 
the synthesis of the mutant equivalence class. 
Mutant Synthesis. Consider the reference circuit in Fig- 
ure 5(b). The circuit is annotated, at each level cut, with 
the results of simulation of two randomly chosen input pat- 
terns, [11110/00100]. A summary of this simulation, with a 
few additonal patterns, is shown in the accompanying table. 
Specifically, the entries in the table summarize the number of 
transitions observed in a specific level cut, including the PI- 
cut and PO-cut. For example, at level LI, we observe a 4-wire 
cut, with three wires having transitions, which propagate un- 
til observed at the primary output. Notably, the 3 transitions 
at level 1 correspond to the size of a cut perturbation with a 
Hamming distance of 3. 

Given the 4-pattern pair signature in Figure 5(b), we have 
many choices to synthesize a mutant in the ESI class. Figure 
5(c) illustrates the choices of perturbations which could be in- 
duced when decoding the simulated pattern [11110/00100]. 
Such a mutation in a canonical circuit netlist can be imple- 
mented as shown in 5(d). At each mutation site in a chosen 
cut, a 2-input XOR gate is inserted, with its other input 
driven by a signal z generated by decoding the two vectors. 
To maintain entropy-invariance, we must perturb all wires 
with observed transitions at same level cut. For example, on 
level 1, we introduce three perturbations, while on level 3 we 
introduce 2 perturbations. Interestingly, introducing pertur- 
bations in an even number of levels not only maintains the 
entropy but also maintains logic invariance of the function. 
Clearly, in a circuit with q levels, and at least 1 perturbation 
at each level, the number of mutants that can be generated 
is proportional to 9! . 

Note the following important features of this method: 
(1) Using different vector pairs, or different cuts of a canon- 

ical circuit, arbitrarily large classes of entropy-invariant mu- 
tant circuits can be generated cheaply. The method scales to 
large circuits, and requires only simulation of a few randomly 
selected vectors to generate large classes of mutant circuits. 

(2) Although the selection of vectors and cuts is deliber- 
ately random, the resulting mutant circuits are not random. 
All mutants thus generated are closely related to the reference 
circuit, and can be expected to induce a controlled distribu- 
tion of BDD sizes. 

Although this paper deals only with the first such class, we 
are studying the generation and properties of ESI mutants in 
three subclasses: 

• ESI mutants based on perturbations of the PO cut. 
• ESI mutants based on a selected "internal" cut. 
• ESI mutants which are also logically equivalent to the 

reference circuit, produced by perturbing an even num- 
ber of selected cuts. 

EXPERIMENTS 

We chose the C499 and C1355 benchmark circuits [1] as ref- 
erence circuits for the following experiments. These logically- 
identical circuits have 41 inputs and 32 outputs;  the ref- 

erence circuits consist of 206 (C499) and 518 (C1355) 2- 
input gate equivalents. In their respective graph-canonical 
forms, the sizes become 694 and 1542 due to the addition of 
feedthroughs. 

We used the VIS 1.1 [8] software from the University of Cal- 
ifornia at Berkeley as a platform for the experiments. Some 
of the conventions and procedures used are described in the 
Appendix. 

Classes of 100 ESI mutants for C499 and C1355 were gen- 
erated by perturbing omly the PO cut. For each class, BDDs 
were built for each mutant, using VIS 1.1 and each of its 
three available BDD packages. Except in Experiment 1, the 
software was allowed to compute a static variable ordering 
using its built-in algorithms, with no "hints" supplied. In 
all cases, dynamic variable ordering was enabled, using the 
sifting method. 

The experiments were as follows: 
1. In order to verify that the mutant classes behaved as 

the small circuits in our preliminary experiments (Figure 
4), we built BDDs for the mutant classes using a fixed, 
near-optimal static order given by Somenzi [7]. Figure 
6(a) presents the mutant sizes for C499 under the CU 
package using this ordering; the mean was 26,649 and 
the standard deviation was 152 nodes. Figure 6(b) shows 
the differences between the sizes for C499 and C1355. As 
expected, the difference of the distributions was quite 
small, reflecting the logical "proximity" of the functions 
in each class to the reference circuit. 

2. We repeated the first experiment, this time allowing 
each of three BDD packages to compute a static vari- 
able ordering and to dynamically reorder the variables, 
using the sifting method [4]. Figure 7 summarizes the 
results of this experiment. Panels (a) and (d) show the 
distribution of BDD sizes achieved by the CU (Univer- 
sity of Colorado, Boulder) BDD package for C499 and 
C1355 respectively3. The remaining panels show the 
distribution of differences between BDD sizes for each 
specific mutant circuit relative to the the CU results. 
Panels (b) and (e) show the CAL package (University of 
Califormia, Berkeley), while panels (c) and (f) show the 
CMU (Carnegie-Mellon University) results. We use this 
differential presentation to highlight detailed differences 
among the packages, which would be difficult to discern 
from raw data. 

3. Both experiments were repeated several times using 
unique mutant classes of 100 circuits generated from the 
same reference circuits by the same methods, with results 
statistically indistinguishable from those shown here. 

SUMMARY OF RESULTS 

The experiments described above result in the following ob- 
servations: 

(1) Overall, the CU package achieved the most uniform 
results. The average BDD size over the mutant classes was 
41,644 nodes for the C499 and 38,165 for the C1355. The 
precision of the estimate of these means was 2.69% for the 
C499 and 4.8% for the C1355, at the 95% confidence level. 

(2) The CAL package got smaller BDDs than the CU pack- 
age for a majority of the C499 mutants, but larger for most 
of the C1355 mutants. 

(3) The CMU package got larger BDDs for both circuits in 
most cases. 

(4) For the "best" variable ordering, the distribution of 
BDD sizes was very narrow over the mutant classes, in con- 
trast to the distributions of Figure 7 for computed orderings. 

3We chose the CU results as a reference point because its distribution had 
the smallest variance of the three packages tested. 



(a) a reference circuit schematic (in topological order) 
PI PI-specific Hamming Distances at 

Pattern PI-( luts, PO-ci JtS, and . Level :uts 
Pair PI PO LI L2 L3 L4 L5 

00000/11111 5 0 4 3 2 2 0 
00100/00110 1 1 2 1 1 1 1 
11110/00100 3 1 3 3 2 1 1 
11000/11010 1 1 1 1 1 1 1 

(b) a reference circuit canonical form and its E-signatures 

(d) a logically variant ESI-mutant induced by (11110/00100) (c) perturbation candidates based on (11110/00100) 
to induce an ESI-mutant circuit 

Fig. 5.   Circuit schematic, canonical form and ESI mutant generation. 
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(b) BDD differences ("best known order") 

Fig. 6.   Best order mutant difference (C1355 - C499). 



(a) BDD size (CU-ordering) 
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(e) BDD differences (CAL -- CU) 
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(c) BDD differences (CMU - CU) 
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(f) BDD differences (CMU -- CU) 

Fig. 7.   Absolute and relative BDD histograms with three algorithms for C499 and C1355 PO-cut mutant class. 



For the CU package, the mean for all mutants was 26,649 
with the best ordering, and a precision of the mean estimate 
of 0.11%. The contrast between these two distributions is a 
strong indication of how much improvement is still possible, 
in principle. 

(5) Most importantly, the results presented are significant 
and repeatable. This is of critical importance for benchmark- 
ing and comparison of results. For instance, the means of the 
CU and CMU distributions for C499 are, respectively, 41,644 
and 51,922, with precision of the estimates of 3.1% and 2.6% 
respectively, at the 95% confidence level. Thus an assertion 
such as, "The CU package achieves smaller BDDs than the 
CMU package" can be made in a statistically significant sense 
for the first time. 

CONCLUSIONS 

We demonstrated that current BDD packages may exhibit un- 
predictable behavior under topological variations of the same 
circuit, thus casting doubt on the significance of many of the 
published results on these systems. We then introduced the 
notion of entropy invariance as a way of generating sets of 
closely related functions, and demonstrated that BDD sizes 
behave as random variables over classes of these functions. In 
experiments with both random and "realistic" mutant func- 
tions, we showed that algorithm performance was often well- 
behaved for "nearby" functions, but discontinuous for larger 
or more "remote" functions. 

We then extended these concepts and defined the class of 
Entropy Signature Invariant circuit mutations, demonstrat- 
ing two methods for generating large sets of circuits with the 
entropy property held invariant. We showed that ESI mutant 
classes, generated from a reference circuit by a simple, scal- 
able methodology, cause BDD variable sizes for the classes 
to behave as random variables. Using this technique, we il- 
lustrate, for the first time, differences between widely-used 
BDD packages, which are statistically significant and easily 
repeatable. We intend to apply this methodology to explore 
the sensitivity of specific ordering algorithms to specific types 
of circuit perturbations. 

It is clear from this work that previous methods of eval- 
uating the performance of BDD algorithms are inadequate. 
We have defined new methods which will lead to deeper un- 
derstanding of the sensitivity of algorithms to function prop- 
erties, and provide a foundation for the measurement and 
refinement of future algorithms. 
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APPENDIX: EXPERIMENTAL PROCEDURES 

Throughout this study, we used the VIS 1.1 software [8], 
developed and supported by the University of California at 

Berkeley. VIS provides a uniform application interface and 
scripting language for (among many other things) building 
and manipulating BDDs. The following points should be 
noted: 

(1) BDD node counts were based on the VIS-generated 
count of MDD (multiterminal decision diagram) nodes. These 
structures use a compact representation which does not store 
complement arcs, and maintains a single terminal node for 
each MDD. The "traditional" method of counting (often seen 
in textbooks) includes both the "0" and "1" terminal nodes, 
but omits the nodes dedicated to input variables, resulting in 
slightly different node counts for small circuits. In general, 
the MDD count is larger than the traditional count by the 
number of primary input variables, an insignificant difference 
for reasonable sized circuits. 

(2) For all experiments involving random numbers, we used 
a 48-bit initial seed value derived from dynamic system prop- 
erties. These initial seeds were saved, and can be used in the 
future to regenerate the mutant classes and repeat the exper- 
iments exactly if need be. 

(3) All experiments were performed on circuits encoded in 
the BLIF language, and were driven by automatic scripts. 
Many PERL 5 programs [14] were developed to automate the 
processes and reduce the data. 

(4) When a fixed variable order was required for an exper- 
iment, we used those archived at the University of Colorado, 
Boulder [7]. However, on the Carry circuit examples, we pro- 
vided the obvious best order ourselves. 
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